

INVERBOOST

Swimming Pool Heat Pump

User and Service manual

•English • Deutsch

INDEX

English	01-35
Deutsch	

Regulation (EU) n° 517/2014 of 16/04/14 on fluorinated greenhouse gases and

repealing Regulation (EC) n° 842/2006

Leak checks

1. Operators of equipment that contains fluorinated greenhouses gases in quantities of 5 tons of CO₂, equivalent or more and not contained in foams shall ensure that the equipment is checked for leaks.

2. For equipment that contains fluorinated greenhouse gases in quantities of 5 tons of CO_2 equivalent or more, but of less than 50 tons of CO_2 equivalent: at least every 12 months.

Picture of the equivalence CO₂

1. Load in kg and Tons amounting CO₂.

Load and Tons amounting CO ₂	Frequency of test
From 2 to 30 kg load = from 5 to 50 Tons	Each year

Concerning the Gaz R32,7.41kg amounting at 5 tons of CO₂, commitment to check each year.

Training and certification

1. The operator of the relevant application shall ensure that the relevant personnel have obtained the necessary certification, which implies appropriate knowledge of the applicable regulations and standards as well as the necessary competence in emission prevention and recovery of fluorinated greenhouse gases and handling safety the relevant type and size of equipment.

Record keeping

1. Operators of equipment which is required to be checked for leaks, shall establish and maintain records for each piece of such equipment specifying the following information:

a) The quantity and type of fluorinated greenhouse gases installed;

b) The quantities of fluorinated greenhouse gases added during installation, maintenance or servicing or due to leakage;

c) Whether the quantities of installed fluorinated greenhouse gases have been recycled or reclaimed, including the name and address of the recycling or reclamation facility and, where applicable, the certificate number;

d) The quantity of fluorinated greenhouse gases recovered

e) The identity of the undertaking which installed, serviced, maintained and where applicable repaired or decommissioned the equipment, including, where applicable, the number of its certificate;

f) The dates and results of the checks carried out;

g) If the equipment was decommissioned, the measures taken to recover and dispose of the fluorinated greenhouse gases.

2. The operator shall keep the records for at least five years, undertakings carrying out the activities for operators shall keep copies of the records for at least five years.

INVERBOOST Swimming Pool Heat Pump User and Service manual

INDEX

- 1. Specifications
- 2. Dimension
- 3. Installation and connection
- 4. Accessories
- 5. Electrical Wiring
- 6. Display Controller Operation
- 7. Troubleshooting
- 8. Exploded Diagram
- 9. Maintenance
- 10. WIFI function- 'Alsavo Pro' APP operation

Thank you for using INVERBOOST swimming pool heat pump for your pool heating, it will heat your pool water and keep the constant temperature when the air ambient temperature is at -12 to 43° C

ATTENTION: This manual includes all the necessary information with the use and the installation of your heat pump.

The installer must read the manual and attentively follow the instructions in implementation and maintenance.

The installer is responsible for the installation of the product and should follow all the instructions of the manufacturer and the regulations in application. Incorrect installation against the manual implies the exclusion of the entire guarantee.

The manufacturer declines any responsibility for the damage caused with the people, objects and of the errors due to the installation that disobey the manual guideline. Any use that is without conformity at the origin of its manufacturing will be regarded as dangerous.

WARNING: Please always empty the water in heat pump during winter time or when the ambient temperature drops below 0° C, or else the Titanium exchanger will be damaged because of being frozen, in such case, your warranty will be lost.

WARNING: Please always cut the power supply if you want to open the cabinet to reach inside the heat pump, because there is high voltage electricity inside.

WARNING: Please well keep the display controller in a dry area, or well close the insulation cover to protect the display controller from being damaged by humidity.

WARNING: The heat pump must be stored and transported vertically in the original packaging. If this is not the case, it cannot be operated immediately. A minimum time of 24 hours is required before power on.

- Please always keep the heat pump in the ventilation place and away from anything which could cause fire.

- Don't weld the pipe if there is refrigerant inside machine. Please keep the machine out of the confined space when make gas filling.

- Action of filling gas must be conducted by professional with R32 operating license.

1. Specifications

	DUUSE SV	vinning poor near pumps			
Model		XP11DCsiPX32 XP14DCsiPX32			
* Performance at Air 28°C, Water 28°C, Humidity 80%					
Turbo Heating capacity	kW	11	14		
Smart Heating capacity	kW	9	11		
Power consumption	kW	1.74-0.14	2.18-0.18		
С.О.Р.		16-6.7	16-6.7		
C.O.P. in Turbo Mode		6.3	6.4		
C.O.P. at 50% capacity		10.3	10.4		
* Performance at Air 15 $^\circ\!\!\!\!\!^\circ$, W	ater 26°C,	, Humidity 70%			
TURBO Heating capacity	kW	7.9	9.5		
SMART Heating capacity	kW	6.6	7.9		
Power consumption	kW	1.72-0.24	2.02-0.25		
С.О.Р.		8.0-5	8.0-5		
C.O.P. in Turbo Mode		4.5	4.6		
C.O.P. at 50% capacity		6.7	6.8		
Compressor type		Inverter compressor			
Voltage	V	220-240V/	/50Hz or 60Hz/1PH		
Rated current	Α	5.9	7.2		
Max current	А	7.8	9.7		
Minimum fuse	А	12	15		
Advised pool volume (with pool cover)	m³	12-35	16-60		
Advised water flux	m³/h	3.0	3.7		
Water pressure drop	Кра	12	14		
Heat exchanger		Twist-tita	nium tube in PVC		
Water connection	mm		50		
Fan quantity			1		
Ventilation type		Horizontal			
Noise level(10m)	dB(A)	≤27 ≤28			
Noise level(1m)	dB(A)	39-51	40-52		
Net weight	kg	68	73		
Gross weight	kg	73	78		
Net dimension	mm	98.	5*405*736		
Packing dimension	mm	1040*460*880			

1.1 Technical data inverboost swimming pool heat pumps

 $\ensuremath{^*}$ Above data is subject to update without prior notice.

2. Dimension (mm)

Model: XP11DCsiPX32 and XP14DCsiPX32

3. Installation and connection

3.1 Notes

The factory supplies only the heat pump. All other components, including a bypass if necessary, must be provided by the user or the installer.

Attention:

Please observe the following rules when installing the heat pump:

- 1. Any addition of chemicals must take place in the piping located **downstream** from the heat pump.
- 2. Install a bypass if the water flow from the swimming pool pump is more than 20% greater than the allowable flow through the heat exchanger of the heat pump.
- 3. Always place the heat pump on a solid foundation and use the included rubber mounts to avoid vibration and noise.
- 4. Always hold the heat pump upright. If the unit has been held at an angle, wait at least 24 hours before starting the heat pump.3.2 Heat pump location

3.2 Heat pump placement

The unit will work properly in any desired location as long as the following three items are present:

1. Fresh air – 2. Electricity – 3. Swimming pool filters

The unit may be installed in virtually any **<u>outdoor</u>** location as long as the specified minimum distances to other objects are maintained (see drawing below). Please consult your installer for installation with an indoor pool. Installation in a windy location does not present any problem at all, unlike the situation with a gas heater (including pilot flame problems).

ATTENTION: Never install the unit in a closed room with a limited air volume in which the air expelled from the unit will be reused, or close to shrubbery that could block the air inlet. Such locations impair the continuous supply of fresh air, resulting in reduced efficiency and possibly preventing sufficient heat output. See the drawing below for minimum dimensions.

3.3 Distance from your swimming pool

The heat pump is normally installed within a perimeter area extending 7.5 m from the swimming pool. The greater the distance from the pool, the greater the heat loss in the pipes. As the pipes are mostly underground, the heat loss is low for distances up to 30 m (15 m from and to the pump; 30 m in total) unless the ground is wet or the groundwater level is high. A rough estimate of the heat loss per 30 m is 0.6 kWh (2,000 BTU) for every 5 °C difference between the water temperature in the pool and the temperature of the soil surrounding the pipe. This increases the operating time by 3% to 5%.

3.4 Check-valve installation

Note: If automatic dosing equipment for chlorine and acidity (pH) is used, it is essential to protect the heat pump against excessively high chemical concentrations which may corrode the heat exchanger. For this reason, equipment of this sort must always be fitted in the piping on the **downstream** side of the heat pump, and it is recommended to install a check-valve to prevent reverse flow in the absence of water circulation.

Damage to the heat pump caused by failure to observe this instruction is not covered by the warranty.

3.5 Typical arrangement

Note: This arrangement is only an illustrative example.

How to get the optimum water flow:

Please turn on the heat pump under heating function, firstly close the by-pass then open it slowly to start the heat pump (the machine can't start running when the water flow is insufficient).

Continue to adjust the by-pass, at the meantime to check the Inlet water temp. & Outlet water temp., it will be optimum when the difference is around 2 degree.

3.7 Electrical connection

Note: Although the heat pump is electrically isolated from the rest of the swimming pool system, this only prevents the flow of electrical current to or from the water in the pool. Earthing is still required for protection against short-circuits inside the unit. Always provide a good earth connection.

Before connecting the unit, verify that the supply voltage matches the operating voltage of the heat pump.

It is recommended to connect the heat pump to a circuit with its own fuse or circuit breaker (slow type; curve D) and to use adequate wiring.

Connect the electrical wires to the terminal block marked ' POWER SUPPLY'.

A second terminal block marked 'WATER PUMP ' is located next to the first one. The filter pump switch(0V) can be connected to the second terminal block here. This allows the filter pump operation to be controlled by the heat pump or the extra dry contact.

Note: In the case of three-phase models, swapping two phases may cause the electric motors to run in the reverse direction, which can lead to damage. For this reason, the unit has a built-in protective device that breaks the circuit if the connection is not correct. If the red LED above this safety device lights up, **you must swap the connections of two of the phase wires**.

3.8 Initial operation

Note: In order to heat the water in the pool (or hot tub), the filter pump must be running to cause the water to circulate through the heat pump. The heat pump will not start up if the water is not circulating.

After all connections have been made and checked, carry out the following procedure:

- 1. Switch on the filter pump. Check for leaks and verify that water is flowing from and to the swimming pool.
- 2. Connect power to the heat pump and press the On/Off button \bigcirc on the electronic control panel. The unit will start up after the time delay expires .
- 3. After a few minutes, check whether the air blowing out of the unit is cooler.
- 4. When turn off the filter pump, the unit should also turn off automatically, if not, then adjust the flow switch.

Depending on the initial temperature of the water in the swimming pool and the air temperature, it may take several days to heat the water to the desired temperature. A good swimming pool cover can dramatically reduce the required length of time.

Water Flow Switch:

It is equipped with a flow switch for protecting the HP unit running with adequate water flow rate . It will turn on wh en the pool pump runs and shut it off when the pump shuts off. If the pool water level higher than 1 m above or b elow the heat pump's automatic adjustment knob, your dealer may need to adjust its initial startup.

Time delay - The heat pump has a built-in 3-minute start-up delay to protect the circuitry and avoid excessive contact wear. The unit will restart automatically after this time delay expires. Even a brief power interruption will trigger this time delay and prevent the unit from restarting immediately. Additional power interruptions during this delay period do not affect the 3-minute duration of the delay.

3.9 Condensation

The air drawn into the heat pump is strongly cooled by the operation of the heat pump for heating the pool water, which may cause condensation on the fins of the evaporator. The amount of condensation may be as much as several litres per hour at high relative humidity. This is sometimes mistakenly regarded as a water leak.

3.10 Drain out the water in winter for the units without drainage outlet in heat exchanger

Turn off the heat pump and be sure that it disconnected power Turn off the water pump

- Close the valves 1 and 2
- Open the valve 4

Allow water to drain out over a long period until heat pump is fully drained. NOTE: It need to close the valve 4 before turn on the heat pump.

3.11 Operating modes for optimal use

- TURBO: Used primarily at the beginning of the season because this mode allows very rapid temperature rise

- SMART: The heat pump has completed its primary task, in this mode; the heat pump is in a position to maintain the pool water in an energy efficient manner. By automatically adjusting speed of compressor and fan the heat pump delivers a better return.

- SILENT: In the summer months when the heat output is minimal required, the heat pump in this mode is even more profitable. Added benefit; when the heat pump heats. It goes with minimal noise load.

4. Accessories

4.1 Accessories list

4.2 Accessories Installation

4.3 Connection to the filtration pump

Photo 1 Photo 2

- Photo 2 Photo 3
- Open the button upwards as (Photo 1)
- Attach the dry contact wiring through the two holes as (Photo 2 & Photo 4)
- Press the button and tighten the wiring as (Photo 3)

Photo 4

5. Electrical Wiring

5.1 SWIMMING POOL HEAT PUMP WIRING DIADRAM

XP11DCsiPX32/XP14DCsiPX32

NOTE:

(1) Above electrical wiring diagram only for your reference, please subject machine posted the wiring diagram.

(2)The swimming pool heat pump must be connected ground wire well, although the unit heat exchanger is electrically isolated from the rest of the unit .Grounding the unit is still required to protect you against short circuits inside the unit .Bonding is also required.

(3)It is recommended that your pool filtration pump and your heat pump are wired independently.

Wiring your pool pump into the heat pump will result in your filtration being switched off once the pool water has reached temperature.

Only wire the pool pump through the heat pump if you have a pool pump for heating only that is independent to yo ur pool filtration system.

Disconnect: A disconnect means (circuit breaker, fused or un-fused switch) should be located within sight of and readily accessible from the unit .This is common practice on commercial and residential heat pumps. It prevents remotely-energizing unattended equipment and permits turning off power at the unit while the unit is being serviced.

6. Display Controller Operation

6.1 Guide for operation

6.2 The keys and their operations

at the same time to check water in temperature, water out temperature and set temperature.

ATTENTION: The button of display will automatically be locked if no operation in 30S,

together for 5S to unlock it.

to change the working mode, Turbo, Smart and silent .The default mode is smart mode.

Turbo mode: the heat pump will operate in 'Small output', 'Medium output' and 'Full output'. Smart mode: the heat pump will operate in 'Small output', 'Medium output' and 'Full output' Silent mode: the heat pump will operate in 'Medium output' and 'Small output'

Press

for 5S to switching the heating mode

Remark: When defrosting, the heating symbol will flash.

Operation logic of Auto Mode:	T1=Water inlet temperature .Tset= set temperature=28°C
operation logic of Auto mode.	11-Water miet temperature, iset-set temperature-20 e

NO	Condition	Current working Status	Water inlet Temperature	Working mode
	When the heat pump starts	Startup	T1≤27℃	Heating mode
1	When the heat pump is	Heating mode	T1≥29℃, last for 3 minutes	Standby
	running	Standby	T1≥30℃	It switches to cooling mode

		Cooling mode	T1=28 $^\circ\!\!\mathrm{C}$, last for 3 minutes	Standby
		Standby	T1≤27℃, last for 3 minutes	It switches to heating mode
	When the heat pump starts	Startup	27℃ <t1≤29℃< td=""><td>Heating mode</td></t1≤29℃<>	Heating mode
		Heating mode	T1≥29℃, last for 3 minutes	Standby
2	When the heat pump is	Standby	T1≥30℃	It switches to cooling mode
	running	Cooling mode	T1=28℃, last for 3 minutes	Standby
		Standby	T1≤27℃, last for 3 minutes	It switches to heating mode

6.2.5 Parameter checking

Press

-0

,the			
Code	Condition	Scope	Remark
d0	IPM mould temperature	0-120 ℃	Real testing value
d1	Inlet water temp.	-9°C∼99°C	Real testing value
d2	Outlet water temp.	-9°C∼99°C	Real testing value
d3	Ambient temp.	-30°C∼70°C	flash if Real value<-9
d4	Frequency limitation code	0,1,2,4,8,16	Real testing value
d5	Piping temp.	-30°C∼70°C	flash if Real value<-9
d6	Gas exhaust temperature	0℃~C5℃ (125℃)	Real testing value
d7	Step of EEV	0~99	N*5
d8	Compressor running frequency	0∼99Hz	Real testing value
d9	Compressor current	0~30A	Real testing value
d10	Current fan speed	0-1200 (rpm)	Real testing value
d11	Error code for last time	All error code	

Remark:

Press

d4:Frequency limitation code,

0: No frequency limit;

2: Overheating or overcooling frequency limit;

8:Drive voltage frequency limit;

1:Coil pipe temperature limit;

4:Drive Current frequency limit;

16:Drive high temperature frequency limit

6.2.6 Parameter setting

again to enter the setting interface, in which

parameter will flash.

Code	Name	Scope	Default	Remark
PO	Mandatory defrosting	0-1	0	 0: Default normal operation 1: mandatory defrosting based on d3 < 15°C
P1	Working mode	0-2	1	1: Heating mode; 0: cooling mode; 2: Auto mode
P2	Timer on/off	0-1	0	 1: Timer on/off is under function; 0: Timer on/off is out of function (The setting of P5 and P6 won't work)
P3	Water pump	0-1	0	1:Always running; 0:Depends on the running of compressor
P4	Current time	HH:MM	00: 00	<u>0-23:0-59</u>
P5	Timer on	HH:MM	00: 00	<u>0-23</u> :0-59
P6	Timer off	HH:MM	00: 00	<u>0-23:0-59</u>
P7	Water temp. calibration	-9~9	0	Default setting: 0
P14	Restore to factory settings	0-1	0	1-Restore to factory settings, 0- default (restore P0,P1,P2,P3,P5,P6,P7,P8,P9,P10,P11 to factory setting)
P16	Product code	/	/	Depend on the machine
P17	WIFI Function	0-1	1	1:WIFI,automatically recognition
P18	Mode	0-1	0	1—Heating only, 0—Heating/Cooling/Auto mode

Note: Long press for 20s to set P8, P14, P17,P18.

P8,P9,P10,P11,P19 parameter is only for factory setting.

6.2.6.1 Water pump logic:

1. Parameter setting : P3=0 : Water pump is related to compressor's operation to start or stop.

When heat pump turns on, filtration pump will start first and then fan motor and compressor.

	Condition	Example	Water pump working logic
Heating mode	T1≥Tset-0.5 ℃, last for 30 minutes	T1≥27.5℃, last for 30 minutes for 30 minutes	Filtration pump will enter standby mode for 1 hours and will not start except after manual power off and restart. Compressor and fan motor
Cooling mode	T1≦Tset+0.5 ℃, last for 30 minutes	T1≦28.5℃, last for 30 minutes	stops first and filtration pump will stop after 5 mins.

1 hour later	Condition	Example Tset=28℃	Water pump working logic
Filtration pump will start to run for 5 mins to detect the water in	T1>Tset-1℃	T1>27℃	Filtration pump will enter standby mode for another 1 hours and will not start except after turning off the hp and restart.
temp.	T1≤Tset-1℃	T1≤27℃	Heat pump will start again until it meets the condition of standby.
	T1 <tset+1℃< td=""><td>T1<29℃</td><td>Filtration pump will enter standby mode for another 1 hours and will not start except after turning off the hp and restart.</td></tset+1℃<>	T1<29℃	Filtration pump will enter standby mode for another 1 hours and will not start except after turning off the hp and restart.
	T1≥Tset+1℃	T1≥29℃	Heat pump will start again until it meets the condition of standby.

Note: If the water volume of the swimming pool is small, water temp reaches T1≥Tset+1[°]C and last for 5 mins, heat pump will stop first and then filtration pump stops, but it will not entry standby mode for 1 hour. If water temp drops to T1≤Tset-1, heat pump will start again.

2. While P3=1: When the heat pump is on (running or standby), filtration pump will always be on.

NOTE :

Tset = Tseting water temperature For example : Tset = 28° C Tseting water temperature in your pool heat pump Tset-1 = less 1° C than Tseting temperature Tset-1 = $28-1=27^{\circ}$ C Tset+1= more 1° C than Tseting temperature Tset+ 1 = $28+1=29^{\circ}$ C

7. Troubleshooting

7.1 Error code display on controller

Malfunction	Error code	Reason	Solution
Inlet water temperature sensor failure d1-TH6	PP01	1. The sensor in open or short circuit 2. The wiring of sensor is loose	 Check or change the sensor Re-fix the wiring of the sensors
Outlet water temperature sensor failure d2-TH5	PP02	 The sensor in open or short circuit The wiring of sensor is loose 	 Check or change the sensor Re-fix the wiring of the sensors
Heating piping sensor failure d5-TH2	PP03	1. The sensor in open or short circuit 2. The wiring of sensor is loose	 Check or change the sensor Re-fix the wiring of the sensors
Ambient temperature sensor failure d3-TH1	PP05	 The sensor in open or short circuit The wiring of sensor is loose 	 Check or change the sensor Re-fix the wiring of the sensors
Exhaust piping sensor failure d6-TH3	PP06	 The sensor in open or short circuit The wiring of sensor is loose 	 Check or change the sensor Re-fix the wiring of the sensors
Antifreeze protection in Winter	PP07	Ambient temperature or water inlet temperature is too low	 Check the d1 and d3. (d1 inlet water temp., d3 outlet water temp.) Normal protection
Low ambient temperature protection	PP08	 Out of the normal operating ambient temperature for this machine by checking d3 Sensor abnormality d3-TH1 	 Stop using, beyond the scope of using Change the sensor
Piping temperature too high protection under cooling mode d3-TH2	PP10	 Ambient or the water temperature is too high in cooling mode Refrigeration system is abnormal Pipe temperature sensor(TH2) failure 	 Check the ambient temperature Check refrigeration system Change the pipe temperature sensor (TH2)
Over low protection for outlet water temperature in cooling mode	PP11	 Low water flow Outlet water temperature sensor d2-TH5 abnormal The difference of outlet water temperature and set temperature is 7°C or above in cooling mode 	 Check filtration pump and waterway system Change outlet water temperature sensor d2-TH5 Change the set temperature.

		1 Ambient temperature is too high	1 Choose the silent mode
ui-h-mana failun		2 Water temperature is too high	2. Check the water flow or filtration nump
		2. Water flow is too low	2. Check the fan motor under sooling mode
		4. Ean motor speed is abnormal or fan	s. check the fail motor under cooling mode,
	EE01	4. Fail motor speed is abnormal of fail	4. Check and repair the refrigerating system
154		Cos system isommed	4. Check and repair the reingerating system
		5. Gas system jammed	5. Reconnect the high pressure wire of replace
		6. High pressure wire is loose or damaged	a new nigh pressure switch
		7. Too much refrigerant	6. Check and repair the refrigerating system
			1. Check the EEV and piping system Check the
			motor
		1. EEV has blocked or pipe system is jammed	2. Check the fan motor under heating mode,
		2. Fan motor speed is abnormal or fan	replace a new one if it is abnormal
Low pressure failure TS5	EE02	motor is damaged under heating mode	3. Check refrigeration system or check the
		3. Gas leakage	pressure value through the high-pressure
		4. Low pressure wire is loose or damaged	gauge.
			4. Reconnect the low pressure wire or replace
			a new low pressure switch
			1. Check the wiring of water flow switch or
	EE03 Or	1. The wiring of water flow switch is loose or	change a new one.
water now failure 151	"ON"	water now switch damaged	2. Check the filtration pump or the waterway
		2. No/Insufficient water flow.	system if there is air or jammed inside
		1. Low water flow	
		2. Water flow switch is stuck and the water	1. Check the water flow switch if it works well
Over heating protection		supply stops	2. Check the filtration pump or the waterway
for water temperature		3. TH5 outlet water temperature sensor is	system if there is air or jammed inside
(d2- TH5) in heating	EE04	abnormal	3. Check TH5 outlet water temperature sensor
mode		4. The difference of outlet water	or replace a new one.
		temperature and set temperature is 7° C or	4. Change the set temperature.
		above in heating mode	
			1. Check the pressure gauge, and fill with some
			gas if it is lack of gas
			2. Check the filtration pump or the waterway
		1 Lack of gas	system if there is air or jammed inside
		2 Low water flow	3 Check the nining system if there was any
d6-TH3 Exhaust too high	EE05	3 Pining system has been blocked	block
protection	2200	4 Exhaust temp, sensor failure d6-TH3	4 Change a new exhaust temp, sensor
		5 Ambient temperature is too high	d6-TH3
			5. Check whether the current ambient temp
			and water temp, are beyond the running temp.
			of the machine
			1 Stop the power supply and restart
		1. Signal is not well connected or democrat	2. Be connect the signal wire or replace a rew
Controller failure	EE06	1. Signal is not well connected or damaged	2. Re-connect the signal wire of replace a new
		2. Controller failure	one
			3. Replace a new controller

Compressor current protection	EE07	 The compressor current is too large instantaneously Wrong connection for compressor phase sequence Compressor accumulations of liquid and oil lead to the current becomes larger Compressor or driver board damaged The water flow is abnormal Power fluctuations within a short time 	 Check if the power in the normal range Check the compressor Check the compressor phase Check the phase sequence connection Check the waterway system and filtration pump Check mains power input
Communication failure between controller and main board	EE08	 Signal wire is not well connected or damaged Controller failure Driving failure 	 Stop the power supply and restart. Re-connect the signal wire or replace a new one Check the controller or replace a new one Check the driving system or update it. Check the driving system or update it.
Communication failure between Main control board and Driving board	EE09	 Poor connection of communication wire PCB failure The wire is damaged 	 Stop the power supply and restart. Reconnect the communication wire or replace a new one Check the wirings according to the electric diagram Replace a new PCB
VDC voltage too high protection	EE10	 Line voltage is too high Driver board is damaged. 	 Check whether the power supply is normal Change driver board or main board
IPM module protection	EE11	 Data mistake Wrong compressor phase connection Compressor liquid and oil accumulation lead to the current becomes larger Poor heat dissipation of drive module or high ambient temperature Compressor or driver board damaged 	 Program error, turn off electricity supply and restart after 3 minutes Check compressor sequence connection Check the pressure of system by pressure gauge Check if the ambient and water temperature is over high If it is the refrigration system failure, send it to the service center Change driver board
VDC voltage too low protection	EE12	 Mother line voltage is too low Driver board is damaged. 	 Check if the power supply is in the normal range Change driver board
Input current over high protection.	EE13	 The compressor current is too large momentary The water flow is abnormal Power fluctuations within a short time Wrong reactor 	 Check the compressor if it works normally Check the waterway system Check if the power is in the normal range Check if the reactor is used correctly.

IPM module thermal	EE14	1. Output abnormity of IPM module thermal circuit	1. Check if the motor speed is too low or fan motor is damaged, replace it by a new one.
circuit is abnormal		 Fan motor is abnormal or damaged Fan blade is broken 	 Replace a new driver board Change the fan blade if it is broken
IPM module temperature too high protection	EE15	 Output exception of IPM module thermal circuit Fan motor is abnormal or damaged Fan blade is broken The screw on driver board is loose 	 Check the main board or replace the driver board Check if the motor speed is too low or fan motor is damaged, replace it by a new one if any failure. Change the fan blade if it is broken Check the screw on driver board
PFC module protection	EE16	 Output exception of PFC module Fan motor is abnormal or damaged Fan blade is broken Input voltage leap, input power is abnormal 	 Check the main board or replace the driver board Check if the motor speed is too low or fan motor is damaged, replace it by a new one. Change the fan blade Check the input voltage
DC fan motor failure	EE17	 DC motor is damaged For the tri-phase check if the neutral is connected Main board is damaged The fan blade is stuck 	 Detect DC motor for mono phase machine, replace a new one if any failure Check the wiring connection for tri-phase machine Check the board, replace a new driver board or main board if any failure Check if there is any barrier in front of fan blade and remove it
PFC module thermal circuit is abnormal	EE18	The driver board is damaged	 Check if the motor speed is too low or fan motor is damaged, replace it by a new one. Change a new driver board
PFC module high temperature protection	EE19	 PFC module thermal circuit output abnormal Fan motor is abnormal or damaged Fan blade is broken The screw in the driver board is not tight 	 Check the main board or replace the driver board Check if the motor speed is too low or fan motor is damaged, replace it by a new one if any failure. Change the fan blade if it is broken Check the screw on driver board
Input power failure	EE20	The supply voltage fluctuates too much	Check whether the voltage is stable

Software control exception	EE21	 Compressor runs out of step Wrong program Impurity inside compressor causes the unstable rotate speed 	 Check the main board or change a new one Update the correct program Check the refrigeration system
Current detection circuit failure	EE22	 1. Voltage signal abnormal 2. Driver board is damaged 3. Main board failure 	1. Change a new main board 2. Change a new driver board
Compressor start failure	EE23	 Main board is damaged Compressor wiring error or poor contact or unconnected Liquid accumulation inside Wrong phase connection for compressor 	 Check the main board or change a new one Check the compressor wiring according to the circuit diagram Check the compressor or change a new one
Ambient Temperature device failure on Driver board	EE24	Ambient Temperature device failure	Change driver board or main board
Compressor phase failure	EE25	Compressors U, V, W are just connected to one phase or two phases.	Check the actual wiring according to the circuit diagram
Four-way valve reversal failure	EE26	 Four-way valve reversal failure Lack of refrigerant (no detect when TH2 or TH1 malfunction) 	 Switch to Cooling mode to check the 4-way valve if it has been reversed correctly Change a new 4-way valve Fill with gas
EEPROM data read malfunction	EE27	 Wrong EEPROM data in the program or failed input of EEPROM data Main board failure 	 Re-enter correct EEPROM data Change a new main board
The inter-chip communication failure on the main control board	EE28	Main board failure	 Stop electricity supply and restart it Change a new main board

Remarks:

1. In heating mode, if the water out temperature is higher than the set temperature over 7° C, controller displays EE04 for water over-heating protection.

2. In cooling mode, if the water out temperature is lower than the set temperature over 7° C, controller displays PP11 for water over-cooling protection.

EE04 Water Overheating Protection

Compressor Stop and PP11 displays

For example below:

PP11 Wate	r Overcooling	Protection
-----------	---------------	------------

Mode	Water out temperature	Setting temperature	Condition	Malfunction
				EE04
Heating mode	36°C	29°C	Tout - Tset ≧7℃	Overheating protection for water
				temperature (d2-TH5)
				PP11
Cooling mode	23°C	30°C	Tset - Tout ≧7℃	Too low protection for water
				temperature (d2-TH5)

Malfunctions	Observing	Reasons	Solution
	LED wire controller	No nowor cupply	Check cable and circuit
	no display.		breaker if it is connected
	LED wire controller.	Heat pump under standby	Startup heat nump to rup
	displays the actual time.	status	
Heat pump is not running	LED wire controller displays the actual water temperature.	 Water temperature is reaching to setting value, HP under constant temperature status. Heat pump just starts to run. Under defrosting. 	 Verify water temperature setting. Startup heat pump after a few minutes. LED wire controller should display "Defrosting".
Water temperature is cooling when HP runs under heating mode	LED wire controller displays actual water temperature and no error code displays.	 Choose the wrong mode. Figures show defects. Controller defect. 	 Adjust the mode to proper running Replace the defect LED wire controller, and then check the status after changing the running mode, verifying the water inlet and outlet temperature. Replace or repair the heat pump unit
Short running	LED displays actual water temperature, no error code displays.	 Fan NO running. Air ventilation is not enough. Refrigerant is not enough. 	 Check the cable connections between the motor and fan, if necessary, it should be replaced. Check the location of heat pump unit, and eliminate all obstacles to make good air ventilation. Replace or repair the heat pump unit.
water stains	Water stains on heat pump unit.	 Concreting. Water leakage. 	 No action. Check the titanium heat exchanger carefully if it is any defect.
Too much ice on evaporator	Too much ice on evaporator.		 Check the location of heat pump unit, and eliminate all obstacles to make good air ventilation. Replace or repair the heat pump unit.

7.2 Other Malfunctions and Solutions (No display on LED wire controller)

8. Exploded Diagram

Model: XP11DCsiPX32

NO	Part name	NO	Part name	
1	Top cover	36	Back grill	
2	Top frame	37	Water inlet temp. sensor	
3	Fan motor bracket	38	Exchanger temperature sensor clip	
4	Evaporator	39	Titanium heat exchanger	
5	Pillar	40	Rubber ring on water connection	
6	Fan motor	41	Blue rubber ring	
7	Fan panel	42	Water connection sets	
8	Fan blade	43	Water inlet temp. sensor	
9	Front panel	44	Rubber ring on water connection	
10	Controller box cover	45	Water flow switch	
11	Controller	46	Red rubber ring	
12	Controller box sponge	47	Electrical box cover	
13	Controller box	48	Reactor	
14	Evaporator support	49	WIFI module	
15	Base tray	50	Reactor box	
16	Isolation panel	51	Electrical box	
17	Service panel	52	РСВ	
18	Evaporator heating resistor	53	Magnet ring	
19	Compressor rubber feet	54	Magnet ring	
20	Compressor heating resistor	55	3-ways terminal block	
21	Compressor	56	clip	
22	Evaporator support	57	2-ways terminal block	
23	Evaporator pipe	58	Four-way valve	
24	Right panel	59	EEV	
25	Distribution piping	60	High pressure switch	
26	Sensor holder	61	Exhaust temp. sensor	
27	Clip	62	Exhaust pipe	
28	Coil Pipe temp. sensor	63	Gas return piping	
29	Back panel	64	Low pressure switch	
30	Rubber fixing block	65	needle valve	
31	Ambient temp. sensor	66	Capillary	
32	Ambient temp. sensor clip	67	4-way valve to exchanger	
33	High pressure gauge	68	4-way valve to evaporator piping	
34	Wire connector	69	Exchanger to EEV	
35	Wire ring	70	4-way valve to exchanger	

9. Maintenance

(1) You should check the water supply system regularly to avoid the air entering the system and occurrence of low water flow, because it would reduce the performance and reliability of HP unit.

(2) Clean your pools and filtration system regularly to avoid the damage of the unit as a result of the dirty of clogged filter.

(3) You should discharge the water from bottom of heat exchanger if HP unit will stop running for a long time (especially during the winter season).

(4) In another way, you should check the unit is water fully before the unit start to run again.

(5) After the unit is conditioned for the winter season, it is recommended to cover the heat pump with special winter cover.

(6) When the unit is running, there is all the time a little water discharge under the unit.

10. WIFI function- 'Alsavo Pro'APP operation

1.1 Heat-Pump with WIFI function

Thank you for using our heat pump with WIFI function, you can remote control your pool heat pump from your smart phone. The controller information could syncs to "Alsavo Pro" APP via an internet connection (WIFI or 3G/4G). For the first time connection, your smart phone and the WIFI controller must be under the same WIFI network. From then on, your smart phone can use the 3G/4G network to control pool heat pump remotely.

By "Alsavo Pro" APP, you can turn heat pump on or off, adjust water temperature, change mode, set time and timer on/off, check malfunction right at your finger tips.

"Alsavo pro" APP is compatible with Android system (6.10 version or above) and IOS system (8.0 version or above). Currently 10 languages (English, Swedish, French, Spanish, Italian, Czech, Polish, German, Russian, Chinese) available. Several heat pumps with WiFi controller could connect to one phone's app, and several phones' app could connect one heat pump.

2. "Alsavo Pro" APP operation

2.1 Firstly, please download "Alsavo Pro" APP from App store or Google play in your smart phone.

2.2 Open "Alsavo Pro" APP, click "+" on the upper left and select "New device". Then Click "Next" and enter the

Or you can press "5S on the display first, then enter the current WIFi password.

"Nickname and password" interface only appear one time when a new heat pump is connected successfully. You can name and add encrypt this unit. (This interface may be missing if the wifi network is not stable. You will miss the chance to name and encrypt it. In this case, default password "123456" is available.)

If someone's APP is in the same WIFI network as yours, his APP could automatically identify your heat pump. And he can operate your heat pump after inputting your password.

2.3 The main interface

< cz01		Alsavo Pro
OFF	Auto Mode	CONTINUE TIMER Setting
Parameter Setting	ដូ់់់់ Smart	Malfunction
28 Set Temp.	°C	21 ℃ Water In
6°C 💽 —	0	41℃

1) Turn ON/OFF

Click "**U**" to turn on or off heat pump.

2) Switch mode

There are there modes (Auto mode, cooling or heating) for the inverter unit. Click its icons to switch (Auto

3) Timer setting

Click *Click*, it turns *Click*. Timer on and off will be activated together. Then choose desired time in "timer on" and "timer off", lastly click "OK" to confirm.

Click" again to cancel.

4) Parameter checking and setting

Click Parameter **Level**, then enter the password "0757".

A Parameter	Alsavo Pro
Parameter Query	Default
	22 °C
Water Out	22 °C
Heating piping temperature	22 °C
Limited frequency code	
Ambient temperature	
Exhaust temperature	
Actual steps of electronic expansion valve	
IPM module temperature	25 °C
Compressor running frequency	
Compressor current	
DC fan motor speed	
Parameter Setting	Range
Water Pump Operating Mode	
Water Temperature Calibration	8.5 0 (-9.9 0~9.9 0)
Re-set to factory default setting	

5)Parameter setting:

- 1. There are 2 modes optional for water pump operation (1: Always running, 0: Depends on the running of compressor)
- 2. Inlet water temperature calibration. (-9.0 to 9.0° C)
- 3. Temperature unit: $^{\circ}C$ or $^{\circ}F$.
- 4. When you want to reset to factory default setting, tips as below pop up .

4) Switch running modes

In heating or cooling mode, there are 3 running modes(Silent, Smart, Powerful/TURBO) for options

While in Auto mode, its default running mode is Smart.

5) Malfunction

If error occurs, the malfunction icon

Click it to check the error.

K Malfunction		Alsavo Pro
Error code	Malfunction	
		ensor failure
PP02	Outlet water temperature	e sensor failure
		failure
PP04	Gas return sensor failure	i I
		nsor failure
		nsor failure
	Anti-freezing protection i	n Winter
		e protection
	Coil pipe temperature too protection under Cooling	o high mode
		iture mode
		neating mode
	Exhaust temperature too	high failure
		ection
		etween

E		
		VDC Voltage too high protection
E		VDC Voltage too low protection
E		IPM module thermal circuit is abnormal
		IPM module temperature too high protection
E		
		DC fan failure
E		
	E22	
		Ambient temperature device failure on Driving board
		EEPROM data reading failure in Transfer board
		The inter-chip communication failure on the main control board
6) Temperature setting

7) Check device information

In the main interface, click the upper right "Alsavo Pro". The Device information will show up.

< CZ01	Ś	Alsavo Pro		<	Device information	Alsavo Pro
	A C	30		Seria	number	8245 0000 0006
	Host	Timor Sotting	<u>\</u>	Firmv		2.0.1(svn39)
	nea	nimer Setting	L/			2.0.1
Q	¢∳Ŷ	\triangle		WLA		OFFICE
Parameter Setting	Smart					V1.0.59463(59164)

8) Revise the heat pump info in the homepage

Click " , you could rename, change its password and delete the device.

INVERBOOST

Schwimmbad Wärmepumpe

Benutzer- und Servicehandbuch

Verordnung (EU) Nr. 517/2014 vom 16.04.14 über fluorierte Treibhausgase und Aufhebung der Verordnung (EG) Nr. 842/2006

Dichtheitskontrolle

1. Betreiber von Geräten, die fluorierte Treibhausgase in Mengen von 5 Tonnen CO2, gleichwertig oder mehr, enthalten und nicht in Schäumen enthalten sind, müssen sicherstellen, dass das Gerät auf Undichtigkeiten überprüft wird.

2. Für Geräte, die fluorierte Treibhausgase in Mengen von 5 Tonnen CO2-Äquivalent oder mehr, jedoch weniger als 50 Tonnen CO2-Äquivalent enthalten: mindestens alle 12 Monate.

Bild der Äquivalenz CO2

1. Laden Sie in kg und Tonnen CO2.

Ladung und Tonnen CO2	Haufigkeit des Tests
2 bis 30 kg Last = 5 bis 50 Tonnen	Jedes Jahr

In Bezug auf den Gaz R32,7,41 kg in Höhe von 5 Tonnen CO2, Verpflichtung zur jährlichen Überprüfung.

Schulung und Zertifizierung

1. Der Betreiber des betreffenden Antrags stellt sicher, dass das zuständige Personal die erforderliche Zertifizierung erhalten hat, die eine angemessene Kenntnis der geltenden Vorschriften und Normen sowie die erforderliche Kompetenz zur Emissionsverhütung und -rückgewinnung von fluorierten Treibhausgasen und zur Handhabung der Sicherheit des betreffenden Personals voraussetzt Art und Größe der Ausrüstung.

Aufzeichnungen führen

1. Die Betreiber von Geräten, die auf Undichtigkeiten überprüft werden müssen, müssen für jedes dieser Geräte Aufzeichnungen mit folgenden Angaben erstellen und führen:

a) Menge und Art der installierten fluorierten Treibhausgase;

b) die Mengen an fluorierten Treibhausgasen, die während der Installation, Wartung oder Instandhaltung oder aufgrund von Leckagen zugesetzt werden;

c) ob die Mengen der installierten fluorierten Treibhausgase recycelt oder zurückgewonnen wurden, einschlie
ßlich des Namens und der Adresse der Recycling- oder R
ückgewinnungsanlage und gegebenenfalls der Zertifikatsnummer;

d) Die Menge der zurückgewonnenen fluorierten Treibhausgase

e) die Identität des Unternehmens, das das Gerät installiert, gewartet, gewartet und gegebenenfalls repariert oder außer Betrieb genommen hat, einschließlich gegebenenfalls der Nummer seines Zertifikats;

f) Datum und Ergebnisse der durchgeführten Kontrollen;

g) Wenn das Gerät außer Betrieb genommen wurde, die Maßnahmen zur Rückgewinnung und Entsorgung der fluorierten Treibhausgase.

2. Der Betreiber hat die Aufzeichnungen mindestens fünf Jahre lang aufzubewahren, die Unternehmen, die die Tätigkeiten für die Betreiber ausführen, müssen Kopien der Aufzeichnungen mindestens fünf Jahre lang aufbewahren.

INVERBOOST Schwimmbad Wärmepumpe

Benutzer- und Servicehandbuch

INDEX

- 1. Spezifikationen
- 2. Dimension
- 3. Installation und Verbindung
- 4. Zubehör
- 5. Elektrische Verkabelung
- 6. Display Controller-Betrieb
- 7. Fehlersuche
- 8. Explosionszeichnung
- 9. Wartung
- 10. WIFI-Funktion Alsavo Pro APP-Betrieb

Vielen Dank, dass Sie die Schwimmbadwärmepumpe INVERBOOST für Ihre Poolheizung verwenden. Sie erwärmt Ihr Poolwasser und hält die Temperatur konstant, wenn die Luftumgebungstemperatur zwischen -12 und 43 ° C liegt

ACHTUNG: Dieses Handbuch enthält alle erforderlichen Informationen zur Verwendung und Installation Ihrer

Wärmepumpe.

Der Installateur muss das Handbuch lesen und die Anweisungen zur Implementierung und Wartung genau befolgen.

Der Installateur ist für die Installation des Produkts verantwortlich und sollte alle Anweisungen des Herstellers und die geltenden Vorschriften befolgen. Eine fehlerhafte Installation anhand des Handbuchs schließt den Ausschluss der gesamten Garantie aus.

Der Hersteller lehnt jede Verantwortung für Schäden ab, die durch Personen, Gegenstände und Fehler aufgrund der Installation verursacht wurden, die gegen die manuelle Richtlinie verstoßen. Jede Verwendung, die am Ursprung ihrer Herstellung nicht konform ist, wird als gefährlich angesehen.

WARNUNG: Bitte leeren Sie das Wasser in der Wärmepumpe im Winter oder wenn die Temperatur unter 0° $^{\circ}$ C sinkt, sonst wird der Titanium-Wechsler durch Frost beschädigt. In diesem Fall ist die Garantie nichtig.

WARNUNG: Bitte schalten Sie immer die Stromversorgung aus, wenn sie die Kabine öffnen wollen um ins Innere der Wärmepumpe vorzudringen, da drinnen Hochspannung herrscht.

WARNUNG: Bitte bewahren Sie den Kontrolldisplay an einem trockenen Ort, oder schließen Sie die Isolationsabdeckung sorgfältig, um es vor Beschädigung durch Nässe zu schützen.

-Bewahren Sie die Wärmepumpe immer am Belüftungsort auf und fern von allem, was zu einem Brand führen könnte.

- Schweißen Sie das Rohr nicht, wenn sich Kältemittel in der Maschine befindet. Bitte halten Sie die Maschine aus dem engen Raum, wenn Sie Gas einfüllen.

Die Maßnahmen zum Auffüllen von Gas müssen von einem Fachmann mit R32-Betriebslizenz durchgeführt werden.

1. Technische Daten

1.1 Technische Daten INVERBOOST Wärmepumpe,R32

Modell		XP11DCsiPX32	XP14DCsiPX32	
* Leistung bei Air 28 °C, Wasser 28		ftfeuchtigkeit 80%		
Turbo Heizleistung	kW	11	14	
Smart Heizleistung	kW	9	11	
Energieverbrauch	kW	1.74-0.14	2.18-0.18	
С.О.Р.		16-6.7	16-6.7	
C.O.P. im Turbo-Modus		6.3	6.4	
C.O.P. bei 50% Kapazität		10.3	10.4	
* Leistung bei Air 15 °C, Wasse	r 26 ℃, Lu	ftfeuchtigkeit 70%		
Turbo Heizleistung	kW	7.9	9.5	
Smart Heizleistung	kW	6.6	7.9	
Energieverbrauch	kW	1.72-0.24	2.02-0.25	
С.О.Р.		8.0-5	8.0-5	
C.O.P. im Turbo-Modus		4.5	4.6	
C.O.P. bei 50% Kapazität		6.7	6.8	
Kompressortyp		Inverter Kompressor		
Stromspannung	V	220-240V/50Hz or 60Hz/1PH		
Nennstrom	А	5.9	7.2	
maximale Spannung	Α	7.8	9.7	
Minimale Sicherung	Α	12.0	15	
Empfohlenes Poolvolumen (mit Poolabdeckung)	m³	12-35	16-60	
Empfohlener Wasserfluss	m³/h	3.0	3.7	
Wasserdruckabfall	Кра	12	14	
Wärmetauscher		Twist-titani	um tube in PVC	
Wasserverbindung	mm		50	
Lüftermenge			1	
Belüftungstyp		Horizontal		
Geräuschpegel (10m)	dB(A)	≤27 ≤28		
Geräuschpegel (1m)	dB(A)	39-51 40-52		
Nettogewicht	kg	68	73	
Bruttogewicht	kg	73 78		
Nettodimension	mm	985*405*736		
Verpackung Dimension	mm	1040*460*880		

* Obrige Daten können ohne vorherige Ankündigung geändert werden

2. Abmessungen (mm)

Modell: XP11DCsiPX32

3. Installation und Anschluss

3.1 Hinweise

Die Fabrik liefert nur die Wärmepumpe. Alle anderen Komponenten, einschließlich eines Bypasses wenn nötig, müssen durch den Benutzer oder den Installateur gestellt werden.

Beachtung:

Bitte beachten Sie beim Einbau der Wärmepumpe folgende Regeln:

1. Die Zugabe von Chemikalien muss in den Rohrleitungen erfolgen, die sich stromabwärts der Wärmepumpe befinden.

2. Installieren Sie einen Bypass, wenn der Wasserfluss von der Schwimmbadpumpe mehr als 20% größer ist als der zulässige Durchfluss durch den Wärmetauscher der Wärmepumpe.

3. Stellen Sie die Wärmepumpe immer auf ein festes Fundament und verwenden Sie die mitgelieferten Gummilager, um Vibrationen und Geräusche zu vermeiden.

4. Halten Sie die Wärmepumpe immer aufrecht. Wenn das Gerät in einem Winkel gehalten wurde, warten Sie mindestens 24 Stunden, bevor Sie die Wärmepumpe starten.3.2 Position der Wärmepumpe.

3.2 Platzierung der Wärmepumpe

Das Gerät funktioniert an jedem gewünschten Ort ordnungsgemäß, solange die folgenden drei Elemente vorhanden sind:

1. Frische Luft - 2. Strom - 3. Schwimmbadfilter

Das Gerät kann an praktisch jedem Ort im Freien installiert werden, solange die angegebenen Mindestabstände zu anderen Objekten eingehalten werden (siehe Zeichnung unten). Bitte wenden Sie sich an Ihren Installateur, wenn Sie ein Hallenbad installieren möchten. Die Installation an einem windigen Ort ist im Gegensatz zu einer Gasheizung (einschließlich Problemen mit der Zündflamme) überhaupt kein Problem.

ACHTUNG: Stellen Sie das Gerät niemals in einem geschlossenen Raum mit einem begrenzten Luftvolumen auf, in dem die aus dem Gerät ausgestoßene Luft wiederverwendet wird, oder in der Nähe von Büschen, die den Lufteinlass blockieren könnten. Solche Standorte beeinträchtigen die kontinuierliche Frischluftzufuhr, was zu einer verringerten Effizienz führt und möglicherweise eine ausreichende Wärmeabgabe verhindert. In der folgenden Zeichnung finden Sie die Mindestabmessungen.

3.3 Entfernung von Ihrem Schwimmbad

Die Wärmepumpe wird normalerweise in einem Umkreis von 7,5 m vom Schwimmbad installiert. Je größer der Abstand zum Pool ist, desto größer ist der Wärmeverlust in den Rohren. Da die Rohre größtenteils unterirdisch sind, ist der Wärmeverlust für Entfernungen von bis zu 30 m (15 m von und zur Pumpe; insgesamt 30 m) gering, es sei denn, der Boden ist nass oder der Grundwasserspiegel ist hoch. Eine grobe Schätzung des Wärmeverlusts pro 30 m beträgt 0,6 kWh (2.000 BTU) pro 5 °C Differenz zwischen der Wassertemperatur im Pool und der Temperatur des das Rohr umgebenden Bodens. Dies erhöht die Betriebszeit um 3% bis 5%.

3.4 Einbau des Rückschlagventils

Hinweis: Wenn automatische Dosiergeräte für Chlor und Säure (pH) verwendet werden, muss die Wärmepumpe unbedingt vor zu hohen chemischen Konzentrationen geschützt werden, die den Wärmetauscher angreifen können. Aus diesem Grund müssen Geräte dieser Art immer in die Rohrleitungen auf der stromabwärtigen Seite der Wärmepumpe eingebaut werden. Es wird empfohlen, ein Rückschlagventil zu installieren, um einen Rückfluss ohne Wasserzirkulation zu verhindern.

Schäden an der Wärmepumpe, die durch Nichtbeachtung dieser Anweisung verursacht werden, fallen nicht unter die Garantie.

3.5 Typische Anordnung

Hinweis: Diese Anordnung ist nur ein veranschaulichendes Beispiel.

3.6 Adjusting the bypass

So erzielen Sie den optimalen Wasserfluss:

Bitte schalten Sie die Wärmepumpe unter Heizfunktion ein, schließen Sie zuerst den Bypass und öffnen Sie ihn dann langsam, um die Wärmepumpe zu starten (die Maschine kann nicht laufen, wenn der Wasserfluss nicht ausreicht).

Passen Sie den Bypass weiter an, um die Wassertemperatur am Einlass zu überprüfen. & Auslasswassertemperatur, es ist optimal, wenn der Unterschied etwa 2 Grad beträgt.

3.7 Elektrischer Anschluss

Hinweis: Obwohl die Wärmepumpe vom Rest des Schwimmbadesystems elektrisch isoliert ist, verhindert dies nur den Stromfluss zum oder vom Wasser im Schwimmbad. Zum Schutz vor Kurzschlüssen im Gerät ist weiterhin eine Erdung erforderlich. Sorgen Sie immer für eine gute Erdung.

Stellen Sie vor dem Anschließen des Geräts sicher, dass die Versorgungsspannung mit der Betriebsspannung der Wärmepumpe übereinstimmt.

Es wird empfohlen, die Wärmepumpe an einen Stromkreis mit eigener Sicherung oder Leistungsschalter (langsamer Typ; Kurve D) anzuschließen und eine angemessene Verkabelung zu verwenden.

Schließen Sie die elektrischen Kabel an den mit "STROMVERSORGUNG" gekennzeichneten Klemmenblock an.

Neben dem ersten befindet sich ein zweiter Klemmenblock mit der Bezeichnung "WASSERPUMPE". Hier kann der Filterpumpenschalter (0V) an den zweiten Klemmenblock angeschlossen werden. Dadurch kann der Betrieb der Filterpumpe durch die Wärmepumpe oder den zusätzlichen Trockenkontakt gesteuert werden.

Hinweis: Bei dreiphasigen Modellen kann das Vertauschen von zwei Phasen dazu führen, dass die Elektromotoren in umgekehrter Richtung laufen, was zu Schäden führen kann. Aus diesem Grund verfügt das Gerät über eine eingebaute Schutzeinrichtung, die den Stromkreis unterbricht, wenn die Verbindung nicht korrekt ist. Wenn die rote LED über dieser Sicherheitsvorrichtung aufleuchtet, müssen Sie die Anschlüsse von zwei der Phasendrähte vertauschen.

3.8 Inbetriebnahme

Hinweis: Um das Wasser im Pool (oder Whirlpool) zu erwärmen, muss die Filterpumpe laufen, damit das Wasser durch die Wärmepumpe zirkuliert. Die Wärmepumpe startet nicht, wenn das Wasser nicht zirkuliert.

Nachdem alle Verbindungen hergestellt und überprüft wurden, führen Sie die folgenden Schritte aus:

- 1. Schalten Sie die Filterpumpe ein. Überprüfen Sie, ob undicht ist, und stellen Sie sicher, dass Wasser vom und zum Schwimmbad fließt.
- 2. 2. Schließen Sie die Wärmepumpe an die Stromversorgung an und drücken Sie die Ein- / Aus-Taste Uauf dem elektronischen Bedienfeld. Das Gerät startet nach Ablauf der Zeitverzögerung.
- 3. Überprüfen Sie nach einigen Minuten, ob die aus dem Gerät austretende Luft kühler ist.
- 4. Wenn Sie die Filterpumpe ausschalten, sollte sich das Gerät auch automatisch ausschalten. Wenn nicht, stellen Sie den Durchflussschalter ein.

Abhängig von der Anfangstemperatur des Wassers im Schwimmbad und der Lufttemperatur kann es mehrere Tage dauern, bis das Wasser auf die gewünschte Temperatur erwärmt ist. Eine gute Schwimmbadabdeckung kann die erforderliche Zeitdauer erheblich verkürzen.

Wasserdurchflussschalter:

Es ist mit einem Durchflussschalter ausgestattet, um die HP-Einheit zu schützen, die mit einem angemessenen Wasserdurchfluss läuft. Sie schaltet sich ein, wenn die Poolpumpe läuft, und schaltet sich aus, wenn die Pumpe abschaltet. Wenn der Poolwasserstand höher als 1 m über oder unter dem automatischen Einstellknopf der Wärmepumpe liegt, muss Ihr Händler möglicherweise die anfängliche Inbetriebnahme anpassen.

Zeitverzögerung - Die Wärmepumpe verfügt über eine integrierte Startverzögerung von 3 Minuten, um die Schaltung zu schützen und übermäßigen Kontaktverschleiß zu vermeiden. Das Gerät startet nach Ablauf dieser Zeitverzögerung automatisch neu. Schon eine kurze Stromunterbrechung löst diese Zeitverzögerung aus und verhindert einen sofortigen Neustart des Geräts. Zusätzliche Stromunterbrechungen während dieser Verzögerungszeit wirken sich nicht auf die Dauer der Verzögerung von 3 Minuten aus.

3.9 Kondensation

Die in die Wärmepumpe gesaugte Luft wird durch den Betrieb der Wärmepumpe zum Erhitzen des Poolwassers stark gekühlt, was zu Kondensation an den Rippen des Verdampfers führen kann. Die Kondensationsmenge kann bei hoher relativer Luftfeuchtigkeit bis zu mehreren Litern pro Stunde betragen. Dies wird manchmal fälschlicherweise als Wasserleck angesehen.

3.10 Lassen Sie im Winter das Wasser für die Geräte ohne Abfluss im Wärmetauscher ab

Schalten Sie die Wärmepumpe aus und stellen Sie sicher, dass die Stromversorgung unterbrochen ist Schalten Sie die Wasserpumpe aus

- Schließen Sie die Ventile 1 und 2

-Öffnen Sie das Ventil 4

Lassen Sie das Wasser über einen längeren Zeitraum ablaufen, bis die Wärmepumpe vollständig entleert ist. HINWEIS: Vor dem Einschalten der Wärmepumpe muss das Ventil 4 geschlossen werden.

3.11 Betriebsarten zur optimalen Nutzung

- TURBO: Wird hauptsächlich zu Beginn der Saison verwendet, da dieser Modus einen sehr schnellen Temperaturanstieg ermöglicht

- SMART: Die Wärmepumpe hat in diesem Modus ihre Hauptaufgabe erfüllt. Die Wärmepumpe ist in der Lage, das Poolwasser energieeffizient zu halten. Durch die automatische Einstellung der Drehzahl von Kompressor und Lüfter liefert die Wärmepumpe eine bessere Rückführung.

- SILENT: In den Sommermonaten, in denen die Wärmeabgabe minimal ist, ist die Wärmepumpe in diesem Modus noch rentabler. Zusätzlicher Nutzen; wenn die Wärmepumpe heizt. Es geht mit minimaler Geräuschbelastung.

4. Zubehör

4.1 Zubehörliste

Antivibrationsbasis, 4 Stk	Ablassstrahl, 2 Stk
Winterhülle, 1 Stck	Wasserablaufrohre, 2 Stk

4.2 Installation des Zubehörs

Antivibrationsbasen 1. Nehmen Sie 4 Antivibrationsbasen heraus 2. Legen Sie sie wie auf dem Bild einzeln auf die Unterseite der Maschine.
Strahl ablassen1. Installieren Sie den Ablassstrahl unter der Bodenplatte2. Mit einer Wasserleitung verbinden, um das Wasser abzulassen.Hinweis: Heben Sie die Wärmepumpe an, um den Strahl zu installieren. Die Wärmepumpe niemals umkippen, da dies den Kompressor beschädigen kann.

4.2 Installation des Zubehörs

Antivibrationsbasen

 Nehmen Sie 4 Antivibrationsbasen heraus
 Legen Sie sie wie auf dem Bild einzeln auf die Unterseite der Maschine.

 Strahl ablassen 1. Installieren Sie den Ablassstrahl unter der Bodenplatte 2. Mit einer Wasserleitung verbinden, um das Wasser abzulassen. Hinweis: Heben Sie die Wärmepumpe an, um den Strahl zu installieren. Die Wärmepumpe niemals umkippen, da dies den Kompressor beschädigen kann.
Wassereinlass- und -auslassverbindung 1. Verwenden Sie das Rohrband, um die Wassereinlass- und -auslassverbindung mit der Wärmepumpe zu verbinden 2. Installieren Sie die beiden Verbindungen wie in der Abbildung gezeigt 3. Schrauben Sie sie an die Wassereinlass- und -auslassverbindung
Kabelverkabelung 1. Öffnen Sie die Abdeckung des Schaltkastens 2. Befestigen Sie das Stromversorgungskabel an den Verbindungsstellen L N E.
Verkabelung der Wasserpumpe (Trockenkontakt) 1. Öffnen Sie die Abdeckung des Schaltkastens 2. Mit den Anschlüssen 1 und 2 können Sie die Wasserfiltration durch den Timer der Filtration steuern (Trockenkontakt).

4.3 Anschluss an die Filterpumpe

Foto 1

Foto 2 Foto 3

- Öffnen Sie den Knopf nach oben als (Foto 1)

- Befestigen Sie die Trockenkontaktkabel durch die beiden Löcher als (Foto 2 & Foto 4)

- Drücken Sie die Taste und ziehen Sie die Verkabelung fest wie (Foto 3)

5. Elektrische Verkabelung 5.1 SCHWIMMBAD-WÄRMEPUMPEN-SCHALTPLAN

XP11DCsiPX32 / XP14DCsiPX32

Foto 4

HINWEIS:

(1) Über dem elektrischen Schaltplan nur als Referenz, bitte geben Sie den Schaltplan an.

(2) Die Schwimmbadwärmepumpe muss gut mit dem Erdungskabel verbunden sein, obwohl der Wärmetauscher des Geräts vom Rest des Geräts elektrisch isoliert ist. Eine Erdung des Geräts ist weiterhin erforderlich, um Sie vor Kurzschlüssen im Gerät zu schützen. Eine Verbindung ist ebenfalls erforderlich .

(3) Es wird empfohlen, dass Ihre Poolfiltrationspumpe und Ihre Wärmepumpe unabhängig voneinander verdrahtet werden.

Wenn Sie Ihre Poolpumpe an die Wärmepumpe anschließen, wird Ihre Filtration ausgeschaltet, sobald das Poolwasser vorhanden ist

hat die Temperatur erreicht.

Verdrahten Sie die Poolpumpe nur durch die Wärmepumpe, wenn Sie nur eine Poolpumpe zum Heizen haben, die unabhängig von Ihrem Poolfiltersystem ist.

Trennen: Ein Trennmittel (Leistungsschalter, abgesicherter oder nicht abgesicherter Schalter) sollte sich in Sichtweite des Geräts befinden und von diesem aus leicht zugänglich sein. Dies ist bei gewerblichen und privaten Wärmepumpen üblich. Es verhindert, dass unbeaufsichtigte Geräte aus der Ferne mit Strom versorgt werden, und ermöglicht das Ausschalten der Stromversorgung am Gerät, während das Gerät gewartet wird.

6.Display Controller-Betrieb

6.1 Bedienungsanleitung

6.2 Die Schlüssel und ihre Funktionen

Um die Wärmepumpeneinheit zu starten.

Drücken Sie, Um die Wärmepumpeneinheit anzuhalten.

Wassertemperatureinstellung:

, um die Wassertemperatur direkt einzustellen.

Einstellbereich für Heizmodus und Auto-Modus: 6-41 $^\circ \!\! C$, Einstellbereich für Kühlmodus: 6-35 $^\circ \!\! C$

Sie gleichzeitig und

, um die Wassertemperatur, die Wassertemperatur und die

eingestellte Temperatur zu überprüfen.

ACHTUNG: Die Schaltfläche des Displays wird automatisch gesperrt, wenn in 30S keine Bedienung erfolgt.

Drücken Sie , um den Arbeitsmodus zu ändern: Turbo, Smart und Silent. Der Standardmodus ist

der Smart-Modus.

Turbomodus: Die Wärmepumpe arbeitet mit "kleiner Leistung", "mittlerer Leistung" und "voller Leistung".

Smart-Modus: Die Wärmepumpe arbeitet mit "kleiner Leistung", "mittlerer Leistung" und "voller Leistung".

Silent-Modus: Die Wärmepumpe arbeitet mit "mittlerer Leistung" und "kleiner Leistung".

umzuschalten

Anmerkung: Beim Auftauen blinkt das Heizungssymbol.

Betriebslogik des Auto-Modus: T1 = Wassereintrittstemperatur, Tset = eingestellte Temperatur = 28 ° C.

NEIN.	Bedingung	Aktueller Arbeitsstatus	Wassereintrittstemperatur	Arbeitsmodus
	Wenn die Wärmepumpe startet	Anlaufen	T1≤27℃	Heizmodus
1		Heizmodus	T1≥29℃,dauert 3 Minuten	Bereithalten
L	Wenn die Wärmepumpe läuft	Bereithalten	T1≥30℃	Es wechselt in den Kühlmodus
		Kühlmodus	T1=28℃, dauert 3 Minuten	Bereithalten
		Bereithalten	T1≤27℃,dauert 3 Minuten	Es schaltet in den Heizmodus
	Wenn die Wärmepumpe startet	Anlaufen	27°C <t1≤29°c< td=""><td>Heizmodus</td></t1≤29°c<>	Heizmodus
2		Heizmodus	T1≥29℃,dauert 3 Minuten	Bereithalten
	Wenn die Wärmepumpe	Bereithalten	T1≥30℃	Es wechselt in den Kühlmodus
	läuft	Kühlmodus	T1=28℃,dauert 3 Minuten	Bereithalten
		Bereithalten	T1≤27℃, dauert 3 Minuten	Es schaltet in den Heizmodus

0ь
33
1st

Drücken Sie	und dannDrücken Sie	🔍, um den Wert d0-d11	zu überprüfen 🙆 ↔ 🖒
Code	Bedingung	Umfang	Anmerkung
d0	IPM-Formtemperatur	0-120 ℃	Echter Testwert
d1	Einlasswassertemp.	-9°C∼99°C	Echter Testwert
d2	Auslasswassertemp.	-9°C∼99°C	Echter Testwert
d3	Umgebungstemparatur.	-30°C∼70°C	blinkt wenn Realwert <-9
d4	Frequenzbegrenzungscode	0,1,2,4,8,16	Echter Testwert
d5	Rohrleitungstemperatur	-30°C∼70°C	blinkt wenn Realwert <-9
d6	Gasabgastemperatur	0℃~C5℃ (125℃)	REchter Testwert
d7	Schritt der EEV	0~99	N*5
d8	Kompressorlauffrequenz	0∼99Hz	Echter Testwert
d9	Kompressorstrom	0~30A	Echter Testwert
d10	Aktuelle Lüftergeschwindigkeit	0-1200 (rpm)	Echter Testwert
d11	Fehlercode für das letzte Mal	Alle Fehlercodes	

Anmerkung:

d4: Frequenzbegrenzungscode,

0: Keine Frequenzbegrenzung; 1: Temperaturgrenze des Spulenrohrs;

2: Frequenzgrenze für Überhitzung oder Überkühlung; 4: Frequenzgrenze des Antriebsstroms;

8: Frequenzgrenze der Antriebsspannung; 16: Frequenzbegrenzung für Hochtemperaturantrieb

6.2.6 Parametereinstellung

Einstellungsoberfläche aufzurufen, in der der Parameter blinkt.

Code	Name	Scope	Default	Remark
PO	Mandatory defrosting	0.1	0	0: Default normal operation
FU		0-1		1:obligatorisches Abtauen basierend auf d3 $<$ 15 $^\circ\!{ m C}$
P1	Arbeitsmodus	0-2	1	1: Heizmodus; 0: Kühlmodus; 2: Auto-Modus
P2	Timer ein / aus	0-1	0	1: Timer ein / aus ist in Funktion; 0: Timer ein / aus ist nicht funktionsfähig (Die Einstellung von P5 und P6 funktioniert nicht)
20	Massarnumna	0.1	0	1: Immer laufen;
P3	wasserpumpe	0-1		0: Abhängig vom Betrieb des Kompressors
P4	Aktuelle Uhrzeit	HH:MM	00: 00	<u>0-23:0-59</u>
P5	Timer an	HH:MM	00: 00	<u>0-23:0-59</u>
P6	Timer aus	HH:MM	00: 00	<u>0-23:0-59</u>
P7	Wassertemperatur. Kalibrierung	-9~9	0	Voreinstellung: 0
	AufWorkspinstollungen			1-Auf Werkseinstellungen zurücksetzen , 0- Standard
P14	Auf werkseinstenungen	0-1	0	(P0, P1, P2, P3, P5, P6, P7, P8, P9, P10, P11 auf
	zurucksetzen			Werkseinstellung zurücksetzen)
P16	Produktcode	/	/	Abhängig von der Maschine
P17	WIFI-Funktion	0-1	1	1: WIFI, automatische Erkennung
P18	Modus	0-1	0	1 - Nur Heizen 🥠 0 - Heizen / Kühlen / Auto-Modus

Hinweis: Drücken Sie 20 Sekunden lang, um P8, P14, P17, P18 einzustellen.

Die Parameter P8, P9, P10, P11, P19 gelten nur für die Werkseinstellung.

6.2.6.1 Wasserpumpenlogik:

1. Parametereinstellung: P3 = 0: Die Wasserpumpe hängt vom Betrieb des Kompressors zum Starten oder Stoppen ab.

Wenn die Wärmepumpe eingeschaltet wird, startet zuerst die Filterpumpe und dann der Lüftermotor und der Kompressor.

	Bedingung	Beispiel	Arbeitslogik der Wasserpumpe
Heizmodus	T1≥Tset-0.5 ℃, dauert 30 Minuten	T1≥27.5℃, dauert 30 Minuten	Die Filtrationspumpe wechselt 1 Stunde lang in den Standby-Modus und startet erst nach manuellem Ausschalten und Neustarten. Der Kompressor- und
Kühlmodus	T1≦ Tset+0.5 ℃, Idauert 30 Minuten	T1≦ 28.5℃,dauert 30 Minuten	Lüftermotor stoppt zuerst und die Filterpumpe stoppt nach 5 Minuten.

1 Stunde später	Bedingung	Beispiel Tset=28℃	Arbeitslogik der Wasserpumpe
Die Filtrationspumpe beginnt 5 Minuten lang zu laufen, um das	T1>Tset-1℃	T1>27℃	Die Filterpumpe wechselt für weitere 1 Stunde in den Standby-Modus und startet erst, nachdem die PS ausgeschaltet und neu gestartet wurde.
Temperatur zu erfassen.	T1≤Tset-1℃	T1≤27℃	Die Wärmepumpe startet erneut, bis die Standby-Bedingung erfüllt ist.
	T1 <tset+1℃< td=""><td>Т1<29°С</td><td>Die Filterpumpe wechselt für weitere 1 Stunde in den Standby-Modus und startet erst, nachdem die PS ausgeschaltet und neu gestartet wurde.</td></tset+1℃<>	Т1<29 ° С	Die Filterpumpe wechselt für weitere 1 Stunde in den Standby-Modus und startet erst, nachdem die PS ausgeschaltet und neu gestartet wurde.
	T1≥Tset+1℃	T1≥29℃	Die Wärmepumpe startet erneut, bis die Standby-Bedingung erfüllt ist.

Hinweis: Wenn das Wasservolumen des Schwimmbades klein ist, die Wassertemperatur T1≥Tset + 1 ℃ erreicht und 5 Minuten dauert, stoppt die Wärmepumpe zuerst und dann die Filterpumpe, wechselt jedoch 1 Stunde lang nicht in den Standby-Modus. Wenn die Wassertemperatur auf T1 ≤ Tset-1 fällt, startet die Wärmepumpe erneut.

2. Während P3 = 1: Wenn die Wärmepumpe eingeschaltet ist (läuft oder Standby), ist die Filterpumpe immer eingeschaltet.

HINWEIS :

Tset = Wassertemperatur Zum Beispiel: Tset = 28 $^{\circ}$ C Wassertemperatur in Ihrer Poolwärmepumpe einstellen Tset-1 = weniger 1 $^{\circ}$ C als Tseting-Temperatur Tset-1 = 28-1 = 27 $^{\circ}$ C Tset + 1 = mehr 1 $^{\circ}$ C als Tseting-Temperatur Tset + 1 = 28 + 1 = 29 $^{\circ}$ C

7. Fehlerbehebung

7.1 Fehlercode-Anzeige auf der Steuerung

PP 01	Einlass Wasser Temperatursensor Ausfall	 Sensorfehler oder Kurzschluss Die Verdrahtung des Sensors ist lose 	 Die Verdrahtung der Sensoren reparieren Schalten Sie den Sensor
PP 02	Auslasswasser temperaturfühlerausfall	1.Sensorfehler oder Kurzschluss 2.Die Verdrahtung des Sensors ist lose	 Die Verdrahtung der Sensoren reparieren Schalten Sie den Sensor
PP 03	Heizungssensorausfall	 Sensorfehler oder Kurzschluss Die Verdrahtung des Sensors ist lose 	 Die Verdrahtung der Sensoren reparieren Schalten Sie den Sensor
PP 04	Gasrücklaufsensorausfall	 Sensorfehler oder Kurzschluss Die Verdrahtung des Sensors ist lose 	 Die Verdrahtung der Sensoren reparieren Schalten Sie den Sensor
PP 05	Ausfall des Umgebungstemperatursens ors	 Sensorfehler oder Kurzschluss Die Verdrahtung des Sensors ist lose 	 Die Verdrahtung der Sensoren reparieren Schalten Sie den Sensor
PP 06	Auspuffrohrsensorausfall	 Sensorfehler oder Kurzschluss Die Verdrahtung des Sensors ist lose 	 Die Verdrahtung der Sensoren reparieren Schalten Sie den Sensor
PP 07	Frostschutz im Winter	Die Umgebungstemperatur oder die Wassereintrittstemperatur ist zu niedrig	Normaler Schutz
PP 08	Niedriger Umgebungstemperatur schutz	 Geben Sie den Umfang der Nutzung der Umgebung Sensor Anomalie 	 Stop verwenden, über den Umfang der Verwendung Schalten Sie den Sensor
PP 10	Piping-Temperatur zu hoher Schutz im Kühlbetrieb	 Ambient Temperatur ist zu hoch oder die Wassertemperatur ist zu hoch im Kühlmodus Kälteanlage ist abnormal 	 Überprüfen Sie den Umfang der Verwendung Kälteanlage prüfen
PP 11	Wassertemperatur (T2) zu niedriger Schutz im Kühlbetrieb	1.Low Wasserfluss 2.T2 Temperatursensor abnormal	 Wasserpumpe und Wasserstraßensystem prüfen Tauschen T2 Temperatursensor

Fehlercode	Fehlfunktion	Grund	Lösung
		1.Hochdruckschalter in	1. Überprüfen Sie die
		schlechtem Anschluss oder	Verdrahtung auf einen
		Ausfall	Hochdruckschalter oder ändern
		2.Ambient Temperatur ist zu	Sie eine neue
EE 01	Hachdruckuorsagan	hoch	2. Überprüfen Sie den
EE UI	Hochuruckversagen	3.Wassertemperatur ist zu hoch	Wasserfluss oder die
		4.Wasserfluss ist zu niedrig	Wasserpumpe
		5.Fan Motordrehzahl ist	3. Ventilator prüfen
		abnormal oder Ventilatormotor	4. Das Rohrleitungssystem
		hat beschädigt	prüfen und reparieren
		1. Niederdruckschalter bei	1. Die Verdrahtung auf
		schlechtem Anschluss oder	Niederdruck prüfen oder eine
		Ausfall	neue ändern
		2.EEV ist blockiert oder	2.Verwenden Sie die EEV und
EE 02	Niederdruckversagen	Rohrsystem ist gestaut	das Rohrleitungssystem
		3. Motorgeschwindigkeit ist	Motor prüfen
		abnormal oder Motor hat	3. Durch das
		beschädigt	Hochdruckmessgerät zur
		4.Gas Leckage	Überprüfung des Druckwertes
	Wasserflussversagen	1.Wasser-Flow-Schalter ist in	1. Die Verdrahtung für den
		schlechter Verbindung	Wasserstromschalter prüfen
EE 03 oder		2.Wasserstromschalter ist	2.Wählen Sie den
'ON'		beschädigt	Wasserflussschalter
		3.No/ Unzureichender	3.Check die Wasserpumpe oder
		Wasserfluss.	die Wasserstraße System
	Überbeizungsschutz für	1 Low Wasserfluss	1.Warten Sie das Wasser Weg
		2 Wasser-Elow-Schalter ist fest	System
FE 0/1	Wassertemperatur (T2) im	und die Wasserversorgung ist	2. Wasserpumpe oder
	Heizhetrieh	abgeschnitten	Wasserstromschalter prüfen
	Heizbeli ieb	Sensor 3 T2 ist abnormal	3. T2-Sensor prüfen oder einen
			anderen ändern
			1.Das Hochdruckmessgerät
			prüfen, wenn auch zu niedrig,
			mit etwas Gas füllen
		1.Lack von Gas	2.Bei der Wasserstraße und der
FE 05	Abgastemperatur (T6) zu	2.Low Wasserfluss	Wasserpumpe kontrollieren
	hoher Schutz	3.Piping-System wurde blockiert	3. Überprüfen Sie das
		4.Exhausttemp. Sensorausfall	Rohrleitungssystem, wenn es
			einen Block gab
			4.Verfahren Sie eine neue
			Auspufftemp. Sensor

EE 06	Regler-Störung	1.Wire Anschluss ist nicht gut oder beschädigt Signalleitung Fehler 2.Controller	 Überprüfen und wieder anschließen der Signalleitung Schneiden Sie einen neuen Signaldraht Stromversorgung abschalten und Maschine neu starten Ändern eines neuen Controllers
EE 07	Verdichterstromschutz	 Der Kompressorstrom ist zu groß momentan Wrong Anschluss für Kompressor-Phasenfolge Kompressor Ansammlungen von Flüssigkeit und Öl führen zum Strom wird größer Kompressor oder Fahrerbrett beschädigt Die Wasserströmung ist abnormal Kraftschwankungen innerhalb kurzer Zeit 	 Kompressor prüfen Überprüfen Sie die Wasserstraße Überprüfen Sie, ob die Stromversorgung im normalen Bereich erfolgt Überprüfen Sie die Phasenfolgeverbindung
EE 08	Kommunikationsfehler zwischen dem Controller und der Hauptplatine	1.Poor-Signalleitung oder beschädigte Signalleitung 2.Controller-Störung	 Überprüfen und wieder anschließen der Signalleitung Schneiden Sie einen neuen Signaldraht Stromversorgung abschalten und Maschine neu starten Ändern eines neuen Controllers
EE 09	Kommunikationsfehler zwischen Hauptplatine und Treiberplatine	1. Anschluss der Verbindung Draht 2.Der Draht ist beschädigt	1.Drücken Sie den Drahtanschluss 2.Keile einen neuen Draht
EE 10	VDC-Spannung zu hoher Schutz	 Mother Netzspannung ist zu hoch Driver Bord ist beschädigt. 	 Überprüfen Sie, ob die Stromversorgung im normalen Bereich liegt Fahren Sie an Bord oder Hauptplatine
EE 11 Schutz der IPM-Module		 Datenfehler Krong Verdichterphasenanschluss Kompressor Flüssigkeit und Öl Anhäufung führen zum Strom wird größer Kompressor oder Fahrerboard beschädigt 	 Programmfehler, Stromversorgung abschalten und nach 3 Minuten neu starten Fahren Sie mit dem Fahrerbrett Kompressor-Sequenzverbindu ng prüfen

EE 12	VDC-Spannung zu wenig Schutz	 Mother Netzspannung ist zu niedrig Driver Bord ist beschädigt. 	 Prüfen Sie, ob die Stromversorgung im normalen Bereich liegt Fahrertreiber wechseln Kompressor prüfen
Eingangsstrom über hohen Schutz.		 Der Kompressorstrom ist zu groß momentan Die Wasserströmung ist abnormal Kraftschwankungen innerhalb kurzer Zeit Wrong PFC Induktivität 	 2. Überprüfen Sie die Wasserstraße 3. Überprüfen Sie, ob die Stromversorgung im normalen Bereich liegt 4. Überprüfen Sie, ob die korrekte PFC-Induktivität verwendet wird
EE 14	IPM-Modul thermische Schaltung ist abnormal	 1.Ausgang Abnormität der IPM-Modul thermischen Kreislauf Motor 2.Fan ist abnormal oder beschädigt 3.Fan Klinge ist gebrochen 	 Fahren Sie eine Fahrerkarte Überprüfen Sie, ob die Motordrehzahl zu niedrig ist oder der Lüftermotor beschädigt ist, ändern Sie einen anderen Ändern Sie eine andere Lüfterklinge
EE 15	Die Temperatur des IPM-Moduls ist zu hoch	Ausfahrt Ausnahme des IPM-Modul-Thermo-Schaltkreis es 2.Motor ist abnormal oder beschädigt 3.Fan Klinge ist gebrochen	 Fahren Sie eine Fahrerkarte Überprüfen Sie, ob die Lüftermotordrehzahl zu niedrig ist oder der Lüftermotor beschädigt ist, ändern Sie einen anderen Ändern Sie eine andere Lüfterklinge
EE 16	PFC-Modulschutz	 1.Ausgang Ausnahme des PFC-Moduls 2.Motor ist abnormal oder beschädigt 3.Fan Klinge ist gebrochen 4.Input Spannungssprung, Eingangsleistung ist abnormal 	 Fahren Sie eine Fahrerkarte Überprüfen Sie, ob die Motordrehzahl zu niedrig ist oder der Lüftermotor beschädigt ist, ändern Sie einen anderen Klappen Sie ein anderes Lüfterblatt Überprüfen Sie die Eingangsspannung
EE 17	DC-Lüftermotorausfall	1.DC Motor ist beschädigt 2.Main Board ist beschädigt 3.Die Lüfterklinge ist fest	 Detect DC-Motor, ersetzen durch eine neue Verbinden Sie eine neue Hauptplatine Finden Sie die Barriere aus

EE 18	Der thermische Schaltkreis des PFC-Moduls ist abnormal	Das Fahrerbrett ist beschädigt	 1.Erfahren Sie eine neue Treiber-Board 2. Überprüfen Sie, ob die Lüftermotordrehzahl zu niedrig ist oder der Lüftermotor beschädigt ist, ändern Sie einen anderen
EE 19	PFC-Modul Hochtemperaturschutz	 1.PFC Modul thermische Schaltung Ausgang anormal 2.Motor ist abnormal oder beschädigt 3.Fan Klinge ist gebrochen 4.Die Schraube im Fahrerbrett ist nicht fest 	 1.Erfahren Sie eine neue Treiber-Board 2. Überprüfen Sie, ob die Motordrehzahl zu niedrig ist oder der Lüftermotor beschädigt ist, ändern Sie einen anderen 3.Klappen Sie ein anderes Lüfterblatt 4. Überprüfen Sie, ob die Schraube locker ist
EE 20	Der Eingangsstromausfall	Die Versorgungsspannung schwankt zu stark	Überprüfen Sie, ob die Spannung stabil ist
EE 21	Software- Steuerausnahme	 1.Kompressor läuft aus dem Schritt 2.Wrong Programm 3.Impurity im Kompressor verursacht die instabile Drehzahl 	 Überprüfen Sie die Hauptplatine oder ändern Sie eine neue Geben Sie das richtige Programm ein
EE 22	Fehlerstromausfall	1.Spannungssignal abnormal 2.Driver Board ist beschädigt	 Überprüfen Sie die Hauptplatine oder ändern Sie eine neue Change eine neue Treiber-Board
EE 23	Kompressorstart fehlgeschlagen	 Main Board ist beschädigt Kompressor Verdrahtungsfehler oder schlechter Kontakt oder unverbunden Flüssigkeitsansammlung innen Wrong Phasenanschluss für Kompressor 	 Überprüfen Sie die Hauptplatine oder ändern Sie eine neue Die Verdichterverdrahtung gemäß Schaltplan prüfen Prüfen Sie den Kompressor oder ändern Sie einen neuen
EE 24	Umgebungs-Temperatur- Geräteausfall auf Treiberkarte	Störung der Umgebungstemperatur	Fahrertreiber oder Hauptplatine wechseln
EE 25	Kompressorphasenversagen	Die Kompressoren U, V, W sind mit einer Phase oder zwei Phasen verbunden	Überprüfen Sie die tatsächliche Verdrahtung gemäß Schaltplan

			1.Schalten Sie den Kühlmodus,
		1.Four-Wege-Ventilumkehrvers	um das 4-Wege-Ventil zu
	Vienuego	agen	überprüfen, wenn es richtig
EE 26	Vier wege-	2.Lack Kältemittel (keine	umgekehrt wurde
	venulumkenrversagen	Erkennung, wenn T3 oder T5	2.Geben Sie ein neues
		Störung)	4-Wege-Ventil ein
			3.Füllen Sie mit Gas
		1.Wrong EEPROM Daten im	1. Geben Sie korrekte
5527	EEPROM-Daten lesen	Programm oder fehlgeschlagene	EEPROM-Daten ein
EE27	Fehlfunktion	Eingabe von EEPROM Daten	2.Change eine neue
		2.Main Board Ausfall	Hauptplatine
	Der		1. Die Stromversorgung
EE28	Inter-Chip-Kommunikationsf	Houpthrottoucfall	abschalten und neu starten
	ehler auf der		2.Change eine neue
	Hauptsteuerplatine		Hauptplatine

Bemerkungen:

1. Wenn die Wasseraustrittstemperatur im Heizmodus höher als die eingestellte Temperatur über 7° C liegt, zeigt der LED-Controller EE04 für den Schutz vor Überhitzung an.

2. Wenn im Kühlmodus die Wasseraustrittstemperatur niedriger als die eingestellte Temperatur über 7° C liegt, zeigt der LED-Controller PP11 als Schutz vor Überkühlung an.

Kompressorstopp und PP11 werden angezeigt

Zum Beispiel unten:

Modus	Wasser heraus Temperatur	Temperatur einstellen	Bedingung	Fehlfunktion
				EE04
Heizmodus	36℃	29°C	Tout - Tset ≧7℃	Überhitzungsschutz für
				Wassertemperatur (T2)
				PP11
Cooling mode	23℃	30℃	Tset - Tout ≧7℃	Zu niedriger Schutz für die
				Wassertemperatur (T2)

7.2 Andere Fehlfur	nktionen und ihre Lösung	werden nicht auf der LE	D-Kabelsteuerung angezeigt)

Fehlfunktion	Anzeichen	Ursachen	Lösung
	LED-Kabelsteuerung hat keine Anzeige	Keine Stromzufuhr	Überprüfen Sie ob Kabel und Schutzschalter verbunden sind
	LED-Kabelsteuerung zeigt die aktuelle Zeit an.	Wärmepumpe im Bereitschaftsmodus	Starten Sie die Wärmepumpe.
Wärmepumpe läuft nicht	LED-Kabelsteuerung zeigt die aktuelle Wassertemperatur an.	 Wassertemperatur erreicht den vorgesehenen Wert, HP ist auf konstantem Temperaturniveau Wärmepumpe hat erst zu arbeiten angefangen Im Auftaumodus 	 Überprüfen Sie die Wassertemperatureinstellungen. Starten Sie die Wärmepumpe nach ein paar Minuten. LED-Kabelsteuerung sollte "Defrosting" anzeigen.
Die Wassertemperatur sinkt wenn HP im Heizmodus läuft	LED-Kabelsteuerung zeigt die aktuelle Wassertemperatur an und kein Fehlercode wird angezeigt	 Der falsche Modus wurde ausgewählt. Die Eingangsdaten sind falsch Steuerung ist defekt 	 Stellen Sie den Modus richtig ein Ersetzen Sie die defekte LED-Kabelsteuerung, und überprüfen Sie den Status nachdem Sie in den Betriebsmodus übergegangen sind, schließlich überprüfen Sie die Wassereintritts- und Austrittstemperatur. Ersetzen oder Reparieren Sie die Heipumpeneinheit
Kurze Laufzeiten	LED-Bildschirm zeigt aktuelle Wassertemperatur an, kein Fehlercode wird angezeigt.	 Ventilator läuft nicht Luftzirkulation ist nicht ausreichend. Unzureichende Kühlmittel. 	 Überprüfen Sie die Kabelverbindungen zwischen dem Motor und dem Ventilator. Wenn nötig sollten Sie ersetzt werden. Überprüfen Sie die Position der Wärmepumpeneinheit, und entfernen Sie alle Hindernisse um eine optimale Luftzirkulation zu erreichen. Ersetzen oder reparieren Sie die Wärmepumpeneinheit.
Wasserflecken	Wasserflecken auf der Wärmepumpeneinheit	1. Beton. 2. Wasserlecke.	1. Nichts tun. 2. Überprüfen Sie den Luft-Wärmewechsle auf Defekte.

Zu viel Eis am Verdampfer Zu viel Eis am Verdampfer	 Überprüfen Sie die Position der Wärmepumpeneinheit, und entfernen Sie alle Hindernisse, um eine optimale Luftzirkulation zu erreichen. Ersetzen oder reparieren Sie die Wärmepumpeneinheit.
--	--

8. Explosionszeichnung

Modell: XP11DCsiPX32

NEIN.	Teilname	NEIN.	Teilname
1	Obere Abdeckung	36	Rückengrill
2	Oberer Rahmen	37	Wassereintrittstemp. Sensor
3	Lüftermotorhalterung	38	Clip des Temperatursensors des
4	Verdampfer	39	Titan-Wärmetauscher
5	Säule	40	Gummiring am Wasseranschluss
6	Lüftermotor	41	Blauer Gummiring
7	Lüfterpaneel	42	Wasseranschluss-Sets
8	Ventilatorflügel	43	Wassereintrittstemp. Sensor
9	Frontblende	44	Gummiring am Wasseranschluss
10	Controller-Box-Abdeckung	45	Wasserdurchflussschalter
11	Regler	46	Roter Gummiring
12	Controller Box Schwamm	47	Schaltkastenabdeckung
13	Controller-Box	48	Reaktor
14	Verdampferunterstützung	49	WIFI-Modul
15	Grundfach	50	Reaktorbox
16	Isolationsplatte	51	Elektrische Box
17	Service-Panel	52	PCB
18	Verdampferheizwiderstand	53	Magnetring
19	Kompressor Gummifüße	54	Magnetring
20	Kompressorheizwiderstand	55	3-Wege-Klemmenblock
21	Kompressor	56	Clip
22	Verdampferunterstützung	57	2-Wege-Klemmenblock
23	Verdampferrohr	58	Vierwegeventil
24	Rechtes Feld	59	EEV
25	Verteilungsleitungen	60	Hochdruckschalter

26	Sensorhalter	61	Abgastemp. Sensor
27	Clip	62	Auspuff
28	Spulenrohrtemp. Sensor	63	Gasrücklaufleitung
29	Rückseite	64	Niederdruckschalter
30	Gummi-Befestigungsblock	65	Nadelventil
31	Umgebungstemparatur. Sensor	66	Kapillar
32	Umgebungstemparatur. Sensorclip	67	4-Wege-Ventil zum Wärmetauscher
33	Hochdruckmanometer	68	4-Wege-Ventil zur Verdampferleitung
34	Kabelstecker	69	Tauscher nach EEV
35	Drahtring	70	4-Wege-Ventil zum Wärmetauscher

9. Wartung

- 1) Sie sollten das Wasserzufuhrsystem regelmäßig überprüfen, um zu vermeiden dass Luft in das System eindringt und geringe Wasserflussmenge verursacht, denn das würde die Leistung und Zuverlässigkeit der HP-Einheit reduzieren.
- 2) Reinigen Sie ihr Becken und Filtersystem regelmäßig um Schäden an der Einheit durch verschmutzte Filter zu vermeiden.
- 3) Sie sollten das Wasser am Boden der Wasserpumpe auslassen, wenn die HP-Einheit für längere Zeit unbenutzt bleiben soll (besonders im Winter).
- 4) Ansonsten sollten überprüfen ob die Einheit mit Wasser gefüllt ist, bevor Sie sie starten.
- 5) Nachdem die Einheit für die Winterseason ausgerüstet wurde, sollte sie mit einer speziellen Winterdecke abgedeckt werden.
- 6) Wärend die Einheit läuft ist es normal wenn ein wenig Wasser darunter ausläuft.

10. WIFI-Funktion - Alsavo Pro-APP-Betrieb

1.1 Über "Alsavo Pro" APP

Vielen Dank für die Verwendung der Wärmepumpe mit WLAN-Controller. Sie können Ihre Pool-Wärmepumpe von Ihrem Smartphone aus fernsteuern. Die Controller-Informationen können über eine Internetverbindung (WIFI oder 3G / 4G) mit der App "Alsavo Pro" synchronisiert werden Die Zeitverbindung, Ihr Smartphone und der WLAN-Controller müssen sich im selben WIFI-Netzwerk befinden. Ab diesem Zeitpunkt kann Ihr Smartphone das 3G / 4G-Netzwerk zur Fernsteuerung der Poolwärmepumpe verwenden.

Mit der APP "Alsavo Pro" können Sie die Wärmepumpe ein- und ausschalten, die Wassertemperatur einstellen, den Modus wechseln, die Timer-Einstellung, die Parametereinstellung und die Funktionsstörung überprüfen.

"Alsavo pro" APP ist kompatibel mit Android-System (6.10 Version oder höher) und IOS-System (Version 8.0 oder höher).

Derzeit sind 10 Sprachen (Englisch, Schwedisch, Französisch, Spanisch, Italienisch, Tschechisch, Polnisch, Deutsch, Russisch, Chinesisch) verfügbar.

Mehrere Wärmepumpen mit WiFi-Controller können sich mit der App eines Telefons verbinden, und mehrere Telefone können eine Wärmepumpe anschließen.

Sowohl die ON / OFF- als auch die Inverter-Pool-Wärmepumpe kann auf die App "Alsavo Pro" angewendet werden, wenn "Alsavo Pro" das erste Mal an die Maschine angeschlossen wird, identifiziert sie die Wärmepumpe ON / OFF oder Inverter und zeigt dann die entsprechende Schnittstelle an.

2. APP-Betrieb "Alsavo Pro"

2.1 Suchen und laden Sie zunächst die App "Alsavo Pro" aus dem App Store oder Google auf Ihrem Smartphone.

2.2 Öffnen Sie die "Alsavo Pro" App, dann klicken Sie auf "+" oben links und wählen Sie "Neues Gerät". Klicken Sie dann auf "Next" und geben Sie das aktuelle WLAN Passwort ein. Bitte denken Sie daran, "⁽⁾" 5S auf dem Display zu drücken, egal ob es ON oder OFF ist. Oder es wird "Gerät konnte nicht verbunden werden" angezeigt.

"Spitzname und Passwort" -Schnittstelle erscheint nur einmal bei der ersten erfolgreichen Verbindung der Wärmepumpe. Sie können dieses Gerät benennen und verschlüsseln. (Bei unsicherem WIFI-Netzwerk fehlt diese Schnittstelle möglicherweise. Sie werden eine Chance verpassen, sie zu benennen und zu verschlüsseln In diesem Fall ist das Standardpasswort "123456" verfügbar.)

Wenn sich jemandes App im selben WIFI-Netzwerk befindet wie Ihr, könnte seine App automatisch Ihre Wärmepumpe identifizieren und er kann Ihre Wärmepumpe nach der Eingabe Ihres Passwortes bedienen..

2.3 Die Hauptschnittstelle (Wechselrichter)

< cz01		Alsavo Pro
OFF	Auto Mode	CO Timer Setting
Parameter Setting	ç ç ç Smart	A Malfunction
28 Set Temp.	°C	21 ℃ Water In
6°C 💽 —	0	- • 41°C

1) EIN / AUS Schalten

"" klicken, um die Wärmepumpe ein oder ausschalten.

2) Arbeitsmodus

Es gibt drei Modi (Auto-Modus, Kühlen oder Heizen) für die Invert-Boost-Funktion: Klicken Sie auf die Symbole,

um zu wechseln (Auto Modus 🎒, Heizung 💟, Kühlung 🗯)

3) Timer-Einstellung

Das Erstmal Oklicken, es wird O. Ein- und Ausschalten des Timers werden zusammen aktiviert, wählen Sie dann die gewünschte Zeit in "Timer ein" und "Timer aus", klicken Sie zuletzt auf "OK", um zu bestätigen.

"" wieder klicken, Timer ein- und ausgeschaltet werden deaktiviert.

4) Parameterüberprüfung und Einstellung

Klicken Sie auf Parameter und geben Sie das Passwort "0757" ein. Es enthält die Abfrage und Einstellung der Parameter.

C Parameter	Alsavo Pro
Parameter Query	Default
	22 °C
Water Out	22 °C
Heating piping temperature	22 °C
Limited frequency code	
Ambient temperature	
Exhaust temperature	
Actual steps of electronic expansion valve	
IPM module temperature	25 °C
Compressor running frequency	
Compressor current	
DC fan motor speed	
Parameter Setting	Range
Water Pump Operating Mode	
Water Temperature Calibration	8.5°C (-9.9°C~9.9°C)
Re-set to factory default setting	
5) Parametereinstellung:

- 1. Es gibt 2 Modi für den Betrieb der Wasserpumpe (1: Immer in Betrieb, 0: Abhängig vom Kompressorbetrieb)
- 2. Einlasswassertemperaturkalibrierung: (-9.0 -9.0°C)
- 3. Einheit von Temperatur: °C or °F.
- 4. Wenn Sie die Werkseinstellungen wiederherstellen, wird im Popup-Fenster angezeigt, ob Sie das Gerät zurücksetzen möchten.

6)Schalten Sie die Frequenz um

Im Heiz- oder Kühlmodus gibt es 3 Frequenzen (Slient, Smart, Powerful) für Optionen

Im Auto-Modus ist die Standardfrequenz Smart.

7) Fehlfunktion

Wenn ein Fehler auftritt, wird das Fehlfunktionssymbol rot . Klicken Sie darauf, um den Fehler zu überprüfen.

<pre>< Malfunction Alsavo Pro</pre>		•		◎ 雁性 ~	4
Error code	Malfunction	 ⊕			
PP01		S T⊄			
 PP02		4			
PP03					
PP04	Gas return sensor failure	90			
PP05					
PP06					
PP07		-			
PP08					
PP10					
		Ĭ			
PP11					
EE01					
EE02					
EE03				-	
EE04				ž Ž	74*
69 🖸 拼写检查 🗵 文	档校对 兼容模式 T?缺失字体		ö E	[4] 150%	

8) Stellen Sie die gewünschte Temperatur ein

Sie können die Zielwassertemperatur einstellen, indem Sie den Schieberegler einstellen oder "• oder "• drücken.

Die Einstellung der Wassertemperatur auf dem Display des Controllers ändert sich entsprechend nach dem Loslassen. Wenn sich die eingestellte Wassertemperatur auf dem Display ändert, wird sie synchron zum APP aktualisiert.

9) Überprüfen Sie die Geräteinformationen

Klicken Sie in der Hauptoberfläche oben rechts auf "Alsavo Pro". Die Geräteinfo wird angezeigt.

< cz01	Alsavo Pro			\langle Device information		Alsavo Pro	
		0		Serial	number	8245 0000 0006	
		<u> </u>	X	Firmv		2.0.1(svn39)	
	Heat	Timer Setting		Upgra		2.0.1	
\C	Ŷġġ	\triangle		WLAN		OFFICE	
Parameter Setting	Smart	Malfunction		Versi		V1.0.59463(59164)	

Mit der Seriennummer und dem Passwort können andere das Gerät über das vorhandene Gerät verbinden

10) Überarbeiten Sie die Wärmepumpeninformationen auf der Homepage

" klicken. Sie könnten umbenennen, das Passwort ändern und das Gerät löschen.

In der Kommunikation fungiert APP als Host, während die Anzeige als Slave ist:

- 1. Wenn die Parameter in der APP geändert werden, wird entsprechend in der Anzeige aktualisiert.
- 2. Wenn sich die Parameter im Display ändern, wird es auch in der APP aktualisiert.

A0221PXI01